Car & Maintenance 2011年1月号 掲載

究極のエコカー研究最前線ルポ

見えてきた

自動車100年ちょっとの歴史のなかで、 技術的にいまほどエキサイティングな時 代はないかもしれない。化石燃料のレシ プロエンジンが、ここにきて急速に進化 を見せていること、ハイブリッドカーが 10%を超えつつあること、電気自動車 乗り物の歴史始まって以来の大変革期を 迎えつつある。

自動車も技術革新が進みつつある。40 大学)で、このほど水素ハイブリッド・ トラックが開発され、ナンバーを取得し

水素エンジン車というと、マツダのロ ータリーエンジンと組み合わせた車筒 (RX-8) やBMWの 7 シリーズ (V12エ ンジン搭載) を思い出す人も多いと思う。 だが、今回のそれは日本の大学、それも 私立大学が独自で作り上げたものだ。水 以外の排出物を出さない水素エンジン単 は、究極のゼロエミッション・カーでも

あまり知られていないが、実は、東京 都市大学(旧・武蔵工業大学)の水素燃 導で走行する「武蔵1号」。

実証実験段階となった。水素ガスエンジ ン車は、限りなくゼロエミッション・カ 一ではあるが、低速トルクが弱く、最高 出力も既存のエンジンにくらべ3割ほど 小さいというデメリットがある。今回技 術的に、その弱点を克服した車両が完成 の実用化時代が見え始めていることなど、したという。いまのところ水素ステーシ ョンがごく限られているため、自由に走 り回るクルマというより、ステーション こうしたなか、水素ガスを燃料とした の周辺で活躍する小口の輸送トラックや 送迎車、あるいはゴミ収集車などでの需 年前から水素燃料エンジンを研究・開発 要に絞り込んでいる。こう考えると、水 してきた東京都市大学(旧・武蔵工業 素ガストラックの実用化もまんざら夢物 語ではない。そのあたりを克明に取材した。 〈広田民郎〉

> 料エンジンの研究は、40年にもわたると いう。日本で始めて水素エンジンを運転

★1974年、東京の環状8号線を白バイの先

★1977年、液体水素燃料と液体水素ポンプ。 2サイクルエンジンを搭載した。

させたのが、1970年だったという。そこ を取得し、現在は北海道の室蘭市で活躍 から数えて約40年のキャリアを持つので ある。4年後の1974年にはその水素エン ジンを搭載した日本初の自動車「武蔵1 号」が東京の幹線道路である環状8号線 を走行させたのである。これを皮切りに、明美さんは、こんなふうに説明する。 これまで10台の水楽エンジン車の試作に 成功し、走行させている。なかでも、1990 年に試作した武蔵8号は、日産フェアレ ディZをベースにしたもので、火花点火 方式の液体水素ポンプを搭載させた。こ の車両は、ハワイでおこなわれた第8回 4年後に完成した武蔵9号は、液体水素 ソリンエンジンにはまだまだ研究課題。 による保冷車 (トラック) で、箱根ター ンパイクでの登板に成功している。昨年 の2009年には水変燃料エンジン搭載のバ ス(ベースは日野リエッセ)の開発に成 功し、日本で始めてのナンバープレート

↑昨年試作し、現在北海道の室間で活躍中の 水栗燃料バス。

見えてきた「水茶ハイブリッド・トラックの実用!!

★1997年、京都サミットCOP3に展示された 「武蔵10号」。

中だという。

大学で、「なぜ水素エンジン車の開発」 が40年にわたり行なわれているのだろう か?。東京都市大学の総合研究所の伊東

「その目的は3つあります。ひとつは.CO: の排出量の削減という社会的な要求です。 連輸部門でのCO:の排出量は全体の19% におよんでいます。これを少しでも減ら すということです。2つ目は、この大学 には40年にわたる水素エンジンの研究実 国際水素エネルギー学会に出展している。 織の蓄積があるということです。水素ガ 実用化するうえでの課題があります。こ れを解決したいということです。3つ目 は、教育的側面です。座学で得られた知

★本業燃料バスの仕組み。後部にエンジンを 載せ、ルーフ上に水栗タンクを積んでいる。

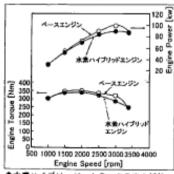
無断転載禁止 著作権は整研出版社に帰属します 転載承認済

東京都市大学グループ

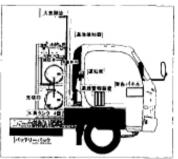
学校法人五島育英会

Car & Maintenance 2011年1月号 掲載

|見えてきた||水素ハイブリッド・トラックの実用化


★左から伊東明美先生とクルマ造りをおこな った岩崎さんと白倉さんの2人(学生)。

識を実物で確認することでより理解を深 めることができる。むろん、環境問題に ついて深く考えるきっかけ作りにもなり ます」。


現在、東京都市大学には「総合研究所」 というのがあり、最先端の実験装置を生 かし、「水素エネルギーセンター」を構 築している。水素エネルギーの研究はこ こで行なわれているのである。

水素エンジンの大きな課題とは?

そして今回公開されたのは、「水素ハ イブリッド・トラック」である。

★水乗ハイブリッド・トラックの出力特性。 ベースエンジンの出力ノトルクと聴りなく近 くなった..

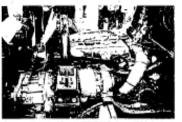
★水寒ハイブリッド・トラックの車両構造。 「武蔵3号」。

ベース車両は、日野デュトロ・ハイブ リッドである。積載量2トン、ペースエ ンジンは4気筒・排気量4リッターの直噴 ディーゼルである。昨年試作した小型バ スの水業エンジン車で、2つの課題があ った。水素エンジンに改造すると低速ト ルクが大幅にダウンすることがひとつ。 2つ目がベースエンジンにくらべ最高出 力が約30%もダウンすることだった。

水素エンジンというのは、予混合火花 点火方式を採用している。吸気パルブを 開いて、燃焼室に空気と水素を入れ、圧 縮行程をへて、スパークプラグから火花 を出すことで燃え広がらせ、膨張させ、 チカラを作り出し、燃焼が終われば排気 バルブから排気する……という現在のガ ソリンエンジンと同じスタイルである。

これまでのエンジンが抱えていた2つ の大きな課題(出力不足と低速トルクの 落ち込み)について、さまざまな試行錯 誤が行なわれたという。その結果、出力 不足に関しては、2つの手段が講じられ た。ひとつは、吸気行程でより多くの空

食べールを扱いだ水便ハイブリッド・トラッ ク。日野デュトロをベースにして、すでに品 川の陸遼事務所でナンバーを取得している。 車両重量は、ノーマルにくらべ約230kg増だ という。


にターボチャージャー (VGターボ)を搭 載していることだ。ところが、過給を高 クして吸気管に燃え広がるというトラブ とどめることができた。 ルが生じたのだ。こうなると、もともと 吸気管は高い圧力と高温に耐える環境に はないので、吸気管自体の破損につなが

わせるために、従来のフルトランジスタ 一点火方式からCDI(キャパシタ・ディス チャージ・イグニッション・システム)に 変更している。CDIというとレースエン

★シリンダーヘッドカバー部。インジェクタ **一の代わりにスパークプラグを装着させてい**


見えてきた!永素ハイブリッド・トラックの実用化

★ベースエンジンは直接VGターボ付きの 4 リッター直列4気筒ディーゼルエンジンだが、 水素燃料エンジンに改造している。手前に見 えるのがVGターボ。

気と燃料をシリンダー内に供給するため ジンとかスクーターに採用されているイ グニッションシステムだが、水素エンジ ンとの相性がよいことを突き止めたので めるとスパークが飛びにくくなったとい ある。この改良によりベースエンジンに う。電荷が残り、次の吸気行程でスパー くらべ最高出力で、わずか10%ダウンに

低速トルクが強いという課題は、ハイ ブリッドシステムという利点をフルに活 用し、モーターアシストで切り抜けてい る。実は水素エンジンは、テールパイプ そこで高過給下で正常な燃焼をおこな から出る有害物質は、基本的にはゼロだ が、NOxの排出に関しては油断できない。 というのは、燃焼が高温になると空気中 の窒素と酸素が結びつきNOxの発生を促 すからだ。しかし、燃焼室に入る空気量

★エンジンの左側に付く、新作された独立型 の吸気マニホールド。1気筒あたり2つのポ ト噴射インジェクターが付く。

無断転載禁止 著作権は整研出版社に帰属します 転載承認済

東京都市大学グループ

学校法人五島育英会

Car & Maintenance 2011年1月号 掲載

見えてきた!水素ハイブリッド・トラックの実用化

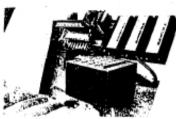
↑エンジンの後部に付くCDI装置。高退給下 でも正常な燃焼に寄与する役目を果たす。

を極端に少なくすればNOxの発生を抑制 できるので空気適剰率 (λ:ラムダ)を 2.0前後にすることで、触媒をいっさい使 わないで規制値をクリアしている。排気 系に使われているのは消音用にマフラー 内のグラスウールぐらいである。とにか く水差ガスエンジンはウルトラ・リーン バーンができるのである。

なお、ハイブリッドシステムは、エン ジンとトランスミッションの間に挟まっ たコイルと永久磁石で構成されたモータ 対し、こ - 基発電機だ。いわゆるパラレル方式の の水素エ ハイブリッドである。モーターの出力ノ トルクはデュトロと同じで30kW/343 Nm、システム効率93%である。こうし た改造で、水素ハイブリッド・トラック

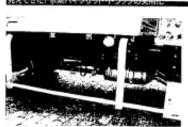
のエンジン性能曲線は、ほぼベースエン ジン車と同じになった。

商職エンジンをブラグ点火の エンジンに改造


エンジンの改造としては、シリンダー ヘッドの中央に位置するインジェクター の代わりにスパークプラグを取り付けて いる。吸気マニホールドを新たに製作し、 1気筒ごと2つのインジェクターを取り 付け、運転状況にあわせ2つを使い分け ているという。さらに噴射パルブを取り 付け、スワールを強めたことで、超希薄 燃焼を実現したという。大学内にエンジ ンダイナモの設備があるので、圧縮比の 選定は比較的スムーズにいったという。 結果的には、ノーマルのディーゼルエン

ジンの圧 総比18に ンジンは 12となっ た (昨年 試作した バスのエ ンジンは

↑アイドリング中はもちろん走行中も、排ガ スは綴りなくゼロだ。


★キャブ内にあるコンバーターとコントロー

圧縮比11だった)。12にするために、ビ ストン頭部にディンブル (へこみ)を設 けている。完成したエンジンを車体に載 せ、日野自動車にあるシャシーダイナモ で、チューニングをおこなったという。 エンジンの改良で約半年間、エンジンの チューニングで約4ヵ月かかったという。 このあたりは総合研究所に所属する学生 3名で行なったという。

ック製のもの。アルミの内様にカーボン ファイバーで耐圧性を高めたものだ。35 ガスは、はるか昔の飛行船ヒンデンブル タが異なるという。 グ号の悲劇を持ち出すまでもなく、危険 もし漏れても溜めないという処重ものフ 池警報装置も備えている。

あるように限りなくゼロに近い。ところ 車にトライしたいです」と目を輝かせた。

EHC. Entic Ozがほんのわず かだが出ている のはなぜか?。

★触媒はハウジングこ そ付いているが中身は 空だ.

最大圧力35MPa、容量が74リッター。

なお、燃料タンクはカナダのダインテ エンジンオイルがどうしてもプローバイ ガスに混じって燃焼室に浸入し、その結 果、ほんのわずかだが数値として取われ MPa (メガパスカル)、74リッタータイプ るのである。余談だが、あまりに小さな を 4 本キャブの背後に載せている。水素 数値のため、測定するたびに微妙にデー

ちなみに、伊東先生の今後の研究課題 な気体だ。まず漏らさないということと、 を聞くと「水素の安全性をより高めて行 きたい」という。「現在はJARIの規格をク ェイルセイフを施している。もちろん湖 リアしているのですが、これに歯記せず より高いレベルまで持っていきたい。そ テールパイプから出る有害物質は表に れともちろん、小型車でも水麦エンジン

が、面白いことに	出ないはずのCO	NOx(g/kWh)	CO(g/kWh)	HC(g/kWh)	CO2(g /kWh)
とHC、それにC	規制値	0.70	2.22	0.170	_
Ozがほんのわず	ベース車両(デュトロ)	1.82	0.31	0.145	835.2
	水業HVトラック	0.18	0.029	0.002	3.2

†排気ガスデータ。水素ハイブリッド・トラックが限りなくゼロ・エ ミッションカーであることが分かる。

無断転載禁止 著作権は整研出版社に帰属します 転載承認済

東京都市大学グループ